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Abstract

In this paper, we investigate different approaches for Di-
alect Identification (DID) in Arabic broadcast speech. Dialects
differ in their inventory of phonological segments. This pa-
per proposes a new phonotactic based feature representation
approach which enables discrimination among different occur-
rences of the same phone n-grams with different phone duration
and probability statistics. To achieve further gain in accuracy
we used multi-lingual phone recognizers, trained separately
on Arabic, English, Czech, Hungarian and Russian languages.
We use Support Vector Machines (SVMs), and Convolutional
Neural Networks (CNNs) as backend classifiers throughout the
study. The final system fusion results in 24.7% and 19.0% rel-
ative error rate reduction compared to that of a conventional
phonotactic DID, and i-vectors with bottleneck features.
Index Terms: Dialect identification, phonotactics, CNN

1. Introduction

The speech signal contains information beyond its linguistic
content, including clues to the speaker’s age, gender, dialect,
social background, and level of education [1, 2, 3]. Dialects
differ in their inventory of phonological segments and their dis-
tribution in the lexicon. Phonetic variation across different di-
alects can involve large spectro-temporal changes in realization
of phonological units. Dialect variation is not just a shift in
phonetic realization. The speech technology has yet to deal ad-
equately with pronunciation variation across different groups of
dialects. Each dialect has its own particular patterns of pro-
nunciation, and there are often certain words or phrases that
are specifically being spoken among speakers of a certain di-
alect. Dialect is a major source of variability for Automatic
Speech Recognition (ASR) and leads to major drop in accu-
racy [4, 5]. In speech synthesis, synthetic voices are based on
one accent due to the prevailing use of corpus-based synthesis
methods operating from the speech of a single speaker. A good
Dialect Identification (DID) system can facilitate the identifica-
tion of dialectal segments from a transcribed speech dataset, and
help with addressing the multi-conditional data problem caused
by dialect variabilities [6]. Training an accurate DID will help
with reducing the error rate for dialectal speech recognition by
selecting a dialect-specific acoustic model, or a dialect-specific
pronunciation dictionary, or by incorporating features which in-
corporate dialectal information features [4, 7, 5, 8].

This paper starts by reviewing related works for DID in Sec-
tion 2 and describing our database in Section 3. Section 4 intro-
duces two successful approaches to DID namely, phonotactics
[9] and i-vectors [1]. Then, it introduces a new feature represen-
tation mechanism for the photostatic DID which incorporates
the phone duration and probabiliy statistics. Finally, Section 5

compares the conventional and proposed systems and reports
the system combination accuracy and the confusion matrix.

2. Related work

Low-level acoustic features help with distinguishing among
different dialects on the basis of acoustic variabilities, while
high-level phonetic and lexical features help with lexical varia-
tions across different Arabic dialects [1, 10, 11]. Proposed ap-
proaches for DID fall into three main categories, namely lexi-
cal, phonotactic and, acoustic. Character n-gram models, roots,
morphology, words, and grammars have been studied as part of
a lexical approach [12, 13], and effectiveness of logistic regres-
sion, recurrent neural networks, and SVM classifiers has been
investigated [14, 15, 16]. Modeling phone n-gram sequences
and subspaces were studied [9] as part of the phonotactic ap-
proach, and its fusion with acoustic approaches achieved high
accuracy [17]. The use of acoustic features such as shifted delta
Cepstral coefficients [3] and prosodic features [18], frame-by-
frame phone posteriors [19], i-vectors [1, 20, 21] and classifi-
cation using long short-term memory (LSTM)s [22], and non-
negative factor analysis for GMM weight decomposition and
adaptation [23] achieved major success.

3. Speech corpora

In this study our database comes from a multi-dialectal speech
corpus comprising four Arabic dialects, namely Egyptian
(EGY), Gulf (GLF), Levantine (LEV), and North African
(NOR) as well as Modern Standard Arabic (MSA) from broad-
cast, debate and discussion programs from Al Jazeera, and as
such contains a combination of spontaneous and scripted speech
[24]. Egyptian is an urban dialect spoken in Cairo and Alexan-
dria. Gulf is a dialect from the Arabic Gulf countries of Bahrain,
Kuwait, Oman, Saudi Arabia, United Arab Emirates, and some-
times Iraq are often grouped together. The Levantine dialect in-
cludes dialects from Jordan, Palestine, and Syria. Modern Stan-
dard Arabic includes formal Arabic speech (news). The North
African dialect includes Algeria, Libya, Morocco, and Tunisia
[22]. The recordings are segmented in order to avoid speaker
overlap, and any non-speech aspects, such as music and back-
ground noise, are removed; more detail about the training data
can be found in [23]. As shown in Table 1, our database repre-
sents five Arabic dialects. In our experiments the hyper param-
eters are selected after 5 fold cross-validation on the training set
and our final accuracy is reported on the unseen test set.

4. System description

Arabic dialects differ substantially in terms of phonology, mor-
phology, lexical choice and syntax. Hence, Phonetically aware
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Training Test

Sent. Dur. Words Sent. Dur.Words

EGY 5k 23.4 87k 302 2 11.6k
GLF 4.7k 21.9 67.9k 250 2.1 12.3k
LAV 4.9k 20.6 63.3k 334 2 10.9k
MSA 4.2k 23.8 82.4k 262 1.9 13k
NOR 4.9k 20.4 47.1k 344 2.1 10.3k
Tot. 15524 110.1 347.5k 1492 10.1 58.1k

Table 1: Data Corpus. # training & test sentences, # words,
speech duration (Dur.) in hours

models could be beneficial for dialect identification, since they
provide a mechanism to focus attention on small phonetic dif-
ferences between dialects with predominantly common pho-
netic inventories. In this section we describe both (1) con-
ventional and (2) proposed phonotactic systems with CNN and
SVM classifiers, and (3) i-vectors with bottleneck features.

4.1. Baseline: phonotactics system

Employing language-dependent parallel phone recognizers
trained from labeled speech has proven to be a successful ap-
proach in a number of language and accent identification tasks
[25, 26]. More recently, multi-lingual and multi-accent Parallel
phonotactic systems have obtained a great success in recogniz-
ing 14 different British English regional accents [3, 17]. In our
baseline system we use a conventional phonotactic system and
investigate the classification accuracy using a SVM and a CNN
classifier. The baseline phonotactic approach relies on the raw
phone sequence distribution and phone n-gram frequency statis-
tics to recognize the speaker’s dialect.

4.2. Proposed: phonotactics system

Our proposed approach takes into account additional phone
level statistics, such as phone duration and posterior probabil-
ity. This proposed mechanism enables discrimination among
different occurrences of the same phone sequences with differ-
ent phone duration or probability statistics by adding a weight
index to the corresponding phone representation in the sequence
(relabeling stage). This relabeling stage draws classifier’s atten-
tion not only to phone sequences and n-gram frequencies, but
also to phone duration and phone probability statistics by us-
ing a new feature representation using a weight index for each
phone. For each speaker, given the mean, M , and the standard
deviation, S, of phone c’s duration D, and phone c’s probabil-
ity, P , the relabeling mechanism is shown bellow. Each phone
c is relabeled as cn with a weight index n = 1, 2, 3, 4.

Algorithm 1 Phone representation with phone duration index
for c in utterance’s phone trasciption do

ifD(c) < M − 0.5S then

c� c1
else {M − 0.5S < D(c) < M}

c� c2
else {M < D(c) < M + 0.5S}

c� c3
else

c� c4
end if

end for

Figure 1 shows a conventional and our proposed phonotac-
tic system. After running our proposed DID phonotactics sys-
tem, a round of score fusion using Linear Logistic Regression
(LLR) [27] will be applied to the classification scores derived
from a SVM or a CNN-based classifier. The LLR weights ares-

Algorithm 2 Phone representation with phone probability index
for c in utterance’s phone trasciption do

if P (c) < M − 0.5S then

c� c1
else {M − 0.5S < P (c) < M}

c� c2
else {M < P (c) < M + 0.5S}

c� c3
else

c� c4
end if

end for

Figure 1: Fusion of classifier’s scores from parallel phonotactic
DID systems (a) baseline, and (b) proposed systems

elected after 5 fold cross-validation on the training set.

4.2.1. Multi-lingual phone recognizers

In our phonotactic systems, we use multi-lingual phone rec-
ognizers. For the Arabic recognizer the LSTM-HMM based
acoustic model is trained using 1400 hours of training data from
the GALE Arabic and MGB3 Arabic datasets [4]. For more de-
tails see the system description in [4]. In addition to the Arabic
recognizer we exploited four existing phone recognizers (En-
glish, Hungarian, Czech, and Russian) from a toolkit developed
by Brno University of Technology [28]. The English system
was trained on the TIMIT database, and the rest were trained
on the SpeechDat-E databases using a hybrid approach based
on Neural Networks and Viterbi decoding. In addition, since
our recognition domain is for Arabic dialects, we built a GMM-
HMM based recognizer.

4.2.2. SVM-based classifier

During a phonotactic DID process, each utterance is passed
through a phone recognizer to generate phone-level transcrip-
tions followed by a vectorization stage. During the vector-
ization, for each utterance the relative frequency of each pre-
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Figure 2: Architecture of our CNN-based classifier

defined set of phone n-grams is computed. Using the TFIDF
weighting technique [29] those n-gram components which have
a low occupancy in all accents are de-emphasized since they do
not carry any useful information, while more emphasize is ap-
plied to more discriminative components that occur only for cer-
tain dialects. In this work a multi-class SVM [30, 31] classifier
with a linear Kernel is trained to create a mapping between the
phone n-gram sequences and different dialect labels. The phone
level transcription from the test speaker’s utterance is scored
against each SVM (using a ‘one against all’ approach). Hyper-
parameters for the SVM are distance from the hyperplane, set
to 0.01, and l2 penalty. The dialect label with maximum score
determines the test utterance’s dialect.

4.2.3. CNN-based classifier

The convolutional neural network (CNN) model has been
shown to be effective for many speech and language processing
applications. CNN filters can learn specific patterns of sounds,
phones, or characters from each input utterance that are rele-
vant for a particular task. Our previous studies have shown en-
couraging results when using Deep Learning methods directly
on raw acoustic features, different word and sub-word units for
DID [10, 32]. Given a phone sequence and associated dialect
labels, we need to find a neural network based predictor, em-
bedding layer, to create a mapping between the phone sequence
c to a vector sequence x. Here, a 5-fold cross-validation is per-
formed on the training dataset to select the values for the hyper-
parameters and the final evaluation is conducted on the test set.
Our CNN architecture comprises of two convolution layers, the
first layer of the CNN is followed by Max Pooling operation,
and the second layer is followed by a global max pooling and a
fully connected hidden layer with 0.2 dropout. During this stage
vector sequence x is mapped to a single final hidden vector h
representing the entire sequence. The final representation is fed
to a softmax layer that maps h to a probability distribution over
labels. During training, each sequence is fed into this network
to create label predictions. As errors are back-propagated down
the network, the weights at each layer are updated, including
the embedding layer. During testing, the learned weights are
used in a forward step to compute a prediction over the labels.
We always take the best predicted label for evaluation.

Parameter set up: In this task we extract the correspond-
ing phone sequence from multi-lingual recognizers and feed
the sequence statistics to a multi-class SVM or a CNN-based
classifier. The SVM classifier uses the phone sequence out-
put from each phone recognizer and uses n-grams with n =
1, 2, 3, 4, 5, 6. After 5 fold cross-validation on the training
dataset, the best accuracy on is obtained with n = 5. The fi-
nal evaluation is conducted on the test set with n = 5.

The CNN classifier takes as input phone sequences gen-
erated by five different language recognizers, namely Arabic,
English, Czech, Hungarian and Russian. Our predictor is a
neural network over phone sequences generated by five differ-
ent languages, namely Arabic, English, Czech, Hungarian and
Russian. System hyperparameters, such as embedding layer
dropout �emb, fully-connected layer dropout �fc, maximum
text length L, phone embedding size demb, and fully-connected
layer output size dfc, were tuned on the development set for
values of: �emb � {0.1, 0.2, 0.5}, �fc � {0.1, 0.2, 0.5},
L � {400, 600, 800}, demb � {50, 150, 200, 300}, and dfc �
{100, 250, 500} (chosen parameters in underline). For the con-
volutional layers, we experimented with different combinations
of filter widths and number of filters. We started with a sin-
gle filter width and noticed that a width of 5-grams performs
fairly well with enough filters (200). We then added multiple
widths, and our best configuration on the development set was:
{1⇤50, 2⇤50, 3⇤100, 4⇤100, 5⇤200, 6⇤200, 7⇤300, 8⇤300},
where w ⇤ n indicates n filters of width w. We train the en-
tire network jointly, including the embedding layer. We use
the Adam optimizer [33] with the default original parameters
to minimize the cross-entropy loss. Training is run with shuf-
fled mini-batches of size 16 and stopped once the loss on the
development set stops improving; we allow up to 20 epochs.

4.3. Baseline: I-vector with BNF features

I-vectors provide a low-dimensional representation of feature
vectors that can be successfully used for classification and
recognition tasks. The i-vector system is used as a compari-
son with the phonotactic DID systems. I-vectors are extracted
using the standard pipeline [1]. Our i-vector system is based
on two successive Deep Neural Network (DNN) ASR models,
each with 5 hidden layers and 1 linear BN layer with tied-states
as target outputs. The tied-state triphone labels are generated
by a forced alignment from an HMM-GMM baseline trained on
1200 hours of MSA news recordings. The input to the first DNN
consists of 23 critical-band energies that are obtained from
Mel filter-bank. Pitch and voicing probability are then added.
Eleven consecutive frames are then stacked together. The sec-
ond DNN is used for correcting the posterior outputs of the first
DNN. In this architecture, the input features of the second DNN
are the outputs of the BN layer from the first DNN. Context ex-
pansion is achieved by concatenating frames with time offsets
of -10, -5, 0, 5, and 10. Thus, the overall time context seen by
the second DNN is 31 frames. After extracting the bottleneck
features (BNFs) they are fed as an input to the i-vector system to
train a Gaussian Mixture Model-Universal Background Model
(GMM-UBM). The GMM-UBM’s mean supervector extracted
and adapted to each utterance. This update information is en-
coded in a low-dimensional latent vector known as an i-vector.
In this work, the GMM-UBMmodel has 2048 Gaussian compo-
nents, MFCC features are extracted using a 25 ms window and
the i-vectors are 400 dimensional. We also perform Linear Dis-
criminant Analysis (LDA) and Within-Class Co-variance Nor-
malization (WCCN). The resulting i-vectors are input to an
SVM classifier. The resulting i-vectors are input to an SVM
classifier. Hyper-parameters for the SVM are distance from the
hyperplane, set to 0.01, and l2 penalty.

5. Results and discussions

In this section we compare the results of our proposed method
with successful baseline acoustic and phonotactic DID ap-
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Figure 3: I-vector based DID system

proaches.
Baseline i-vector system: The i-vector based DID system

achieves 67% accuracy using an SVM recognizer.
Phonotactic system: Table 2, shows the results for Arabic

phonotactics DID employing five language-dependent parallel
phone recognizers. The accuracy (Acc.) of a baseline phono-
tactic system using phone n-gram sequence (seq.) statistics with
SVM and CNN classifiers is reported for each phone recog-
nizer. Our experiment on the baseline phonotactic system shows
that the CNN-based classifier outperforms the multi-class SVM
classifier in all five setups. For instance, a baseline phonotactic
DID trained on Hungarian achieves 57.85% accuracy which is
surprisingly very close to that of a DID system trained on Ara-
bic with 57.91% accuracy. The final system fusion across all
5 systems results in 64.50% and 62.12% DID accuracy using a
CNN and a SVM classifier respectively.

Language (%) Phone n-gram (%) Phone n-gram
seq. Acc. SVM seq. Acc. CNN

Arabic 56.82 57.91
English 56.03 56.88
Russian 56.25 57.12
Czech 56.64 57.62

Hungarian 56.71 57.85
Fusion 62.12 64.50

Table 2: Employing language-dependent parallel PRLMS in a
conventional versus an attention-based context for DID

Proposed phonotactic system: As mentioned in Section
4.2, we use the output statistics of phone recognizers, (a) phone
sequences, (b) phone duration, and (c) probability statistics to
creat new phone represntations that capture not only the phone
sequences but also their relative duration and probabilities with
modified indexes. Other rows report the accuracy using the re-
labeled phone n-gram sequences for each language. For the pro-
posed phonotactic DID task fusing all five parallel multi-lingual
DIDs leads to 71.60 % accuracy while fusing the scores from
the top three multi-lingual PRLMs, namely Arabic, Hungarian,
and Czech achieves 73.27% accuracy.

Confusion matrix for the final system combination: The
confusion matrix for our top best system combination is shown
in Figures 4. In general these DID systems perform worst in
case of GLF, NOR, and LAV dialects. Our proposed approach
has led to 14.73%, 24.01%, 19.63%, 18.21%, and 23.97% rel-
ative DID error rate reduction for EGY, GLF, LAV, MSA, and
NOR respectively. Interestingly, these results show that the rel-
ative error rate has reduced more dramatically for the difficult
dialects (GLF, NOR, and LAV) while it had a lower impact on
the less difficult dialects (EGY and MSA).

Language System (%) Acc.
Arabic Phone n-gram sequence with CNN 57.91

Phone n-gram (duration relabeled) with CNN 59.55
Phone n-gram (probability relabeled) with CNN 59.72

LLR fusion of 3 systems 68.95
English Phone n-gram sequence with CNN 56.88

Phone n-gram (duration relabeled) with CNN 56.30
Phone n-gram (probability relabeled) with CNN 56.24

LLR fusion of 3 systems 63.70
Russian Phone n-gram sequence with CNN 57.12

Phone n-gram (duration relabeled) with CNN 57.59
Phone n-gram (probability relabeled) with CNN 57.29

LLR fusion of 3 systems 65.10
Czech Phone n-gram sequence with CNN 57.62

Phone n-gram (duration relabeled) with CNN 57.71
Phone n-gram (probability relabeled) with CNN 57.37

LLR fusion of 3 systems 67.85
Hungarian Phone n-gram sequence with CNN 57.85

Phone n-gram (duration relabeled) with CNN 58.74
Phone n-gram (probability relabeled) with CNN 58.90

LLR fusion of 3 systems 68.31
Fusion LLR fusion of all systems 71.60

LLR fusion of Arabic, Hungarian, and Czech systems 73.27
Table 3: Employing language-dependent parallel PRLMS in a
conventional versus an attention-based context for DID

75.5 4.6 10.9 5.9 2.9
9.6 46.3 21.6 21.2 1.6
17.4 11.4 57.5 8.6 5.0
4.5 3.1 1.5 89.3 1.5
15.6 7.5 18.6 14.5 43.6

EGY
GLF
LAV
MSA
NOR

Predicted Dialects

La
be
le
d
Di
al
ec
ts

Arabic Dialect ID

Figure 4: DID Confusion Matrix for the final combined pro-
posed phonotactic system

6. Conclusions

In this paper, we present a comprehensive performance study of
Spoken DID methods for the Arabic language. Along with in-
vestigating the traditional methods for DID such as i-vector and
n-gram phonotactic features with an SVM classifier, we also in-
vestigate the advantages of using a CNNs for direct mapping
of acoustic and phonotactic features to one of the five dialects.
We have demonstrated a new approach for phonotactic dialect
Identification with a noval feature representation methodology
which captures phone duration, and probability statistics as well
as phone sequences. This system achieves 73.27% accuracy us-
ing a system combination comprising multi-lingual phonotactic
systems trained on Arabic, English, Russian, Czech, and Hun-
garian. We studied the dialect identification error patterns using
a confusion matrix. The final system fusion for our proposed
phonotactic system results in 24.7% and 19% relative error rate
reduction compared to that of the fused baseline multi-lingual
phonotactics and the ivector with BNF features. For our future
work, we would continue our investigation into approaches that
can directly map the raw acoustic waveform to the correspond-
ing dialects. In particular, we would explore Long Short-Term
Memory RNN to make dialect predictions per frame.
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