ADI17: A FINE-GRAINED ARABIC DIALECT IDENTIFICATION DATASET

Suwon Shon'*, Ahmed Ali?, Younes Samih?, Hamdy Mubarak?®, James Glass®

ASAPP Inc., New York, NY, USA!
Qatar Computing Research Institute, HBKU, Doha, Qatar?
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA3

swshon@csail.mit.edu

ABSTRACT

In this paper, we describe a method to collect dialectal speech from
YouTube videos to create a large-scale Dialect Identification (DID)
dataset. Using this method, we collected dialectal Arabic from
known YouTube channels from 17 Arabic speaking countries in the
Middle East and Northern Africa. After a refinement process, a total
of 3,000 hours of speech was available for training DID systems,
with an additional 57 hours of speech for development and test-
ing. For detailed evaluations, the DID data was divided into three
sub-categories based on the segment duration: short (less than 5s),
medium (5-20s), and long (over 20s). We compare state-of-the-art
DID techniques on these data, and also analyze a DID system trained
on these data. Since the training and test data share the same channel
domain, we also used the Multi-Genre Broadcast 3 (MGB-3) test set
to evaluate on domain mismatched condition.

Index Terms— Dialect Identification, Arabic dialect, Language
Identification, Dataset, Large-scale

1. INTRODUCTION

Language identification (LID) has become increasingly important
for many speech processing tasks such as automatic speech recog-
nition, machine translation, and speech synthesis. LID research
has benefited tremendously through the years by regular Language
Recognition Evaluation (LRE) challenges that have been organized
by the National Institute of Standards and Technology (NIST). The
NIST LRE series has established baselines of LID performance and
provided datasets of conversational telephone speech.

Dialect identification (DID) can be regarded as a special case
of LID. Compared to LID however, DID is arguably more challeng-
ing because dialects usually belong the same language family. Thus,
subtle differences among dialects and accents are the only cue to
identification. Despite these challenges, DID is relatively unexplored
compared to LID. One of the main reasons is the lack of a common
dataset for research support. For example, the NIST LRE 2015 chal-
lenge provided Arabic language sets with 4 regional Arabic dialect
labels, which is limited if we consider all the varieties of Arabic.

Arabic is an attractive language to explore DID, due to its
uniqueness and widespread use. While 22 countries in the Arab
world use Modern Standard Arabic (MSA) as their official lan-
guage, citizens speak their local dialect in everyday life. Arabic
dialects are historically related and share Arabic characters. How-
ever, they are not mutually comprehensible. Arabic DID, therefore,
poses different challenges compared to other language dialects con-
taining comprehensible vernacular [1]. The previous Multi Genre
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Broadcast (MGB-3) challenge provided a dataset containing five
regional Arabic dialects and resulted in studies covering diverse
DID topics such as domain adaptation [2, 3, 4], semi-supervised
learning [5, 6, 7, 8], and linguistic feature extraction [1, 9]. Nonethe-
less, the limitation of prior studies is obvious because there are only
five regional dialect classes and each class still needs to cover a
large variety of Arabic dialects. Also, the MGB-3 dataset is a very
small dataset which has only 53 hours of speech for the training set.
NIST LRE series datasets could be used to explore DID, but these
datasets are not freely available and also have less than five regional
classes. For these reasons, we decided to collect a freely available
Arabic Dialect Identification dataset for 17 countries (ADI17) with
a large-scale and fine-grained label set.

The previous Arabic dialect datasets were limited under five re-
gional dialect classes. To extend the task to a fine-grained analysis
of dialectal Arabic speech, we collected from YouTube about 3 000
hours of Arabic dialect speech data from 17 countries. A further 280
hours of data was collected which was processed using automatic
speaker clustering and dialect labeling by human annotators, result-
ing in 58 hours of speech selected for use as development and test
sets. To provide a benchmark performance test, we defined two sub-
task conditions for a supervised task and semi-supervised task. For
two sub-tasks, we evaluated the state-of-the-art systems such as end-
to-end DID system and x-vector. Note that this dataset was also used
for the 5th edition of MGB challenge [10].

2. ADI17 DATASET AND COLLECTION PIPELINE

The Arabic Dialect Identification 17 country (ADI17) dataset con-
sists of videos from 17 Arabic countries. The dataset provides 11-
character YouTube video IDs, timestamps (i.e., start times and end
times) and dialect labels. Since the original videos are subject to
copyright, we do not make them available directly. We instead pro-
vide the YouTube IDs, timestamps, and annotations'. YouTube is
freely available, anyone can download and segment the videos using
the time stamp information. For this paper, we only used the audio
segment and discarded the video. A total of 3,033 hours of speech are
provided for the training set, but the proportions of each language are
severely unbalanced. For example, Iraq has 815 hours while Jordan
has only 25 hours. This unbalance could be problematic for training,
but we release the dataset as is without balancing the proportions to
provide as much data as possible. The labels of the training set are
noisy, so they could contain other dialects or languages while the de-
velopment and test set were labeled by a human annotator. The test
set has three sub-categories with segments of different durations, i.e.,
short (under 5sec), medium (between 5 and 20 sec) and long (over
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Name Free Channel Dialect labels Duration
Broadcast 5
MGB-3 [11] v News (Regional) 74h
VarDial2018 [12] N Multimedia 5 26h
(only test set is available) (YouTube) (Regional)

GALE Phase 2 Arabic Broadcast 2 251h
Broadcast Conversation Speech News (MSA or dialect)
Multi-Language Conversational 4

Telephone Speech 2011 Telephone (Regional) 17h
NIST LRE 2017 Telephon 4
(most recent from the series) clephone (Regional)
MADAR [13, 14] Only text 15
(25 Arabic city dialects in the travel domain) nly tex (Arabic countries)
Multimedia 17
ADI7 " | (YouTube) | (Arabic countries) | %!

Table 1: Comparison of existing Multi-Arabic dialect identification
speech data

Country (ISO 3166-1 format) Training Dev Test
alpha-3 English Dur Utt. Dur Utt. Dur Utt.
code short name
DZA Algeria 115.7h 32,262 0.6h 246 1.9h 745
EGY Egypt 451.1h 151,052 1.9h 630 2.1h 760
1IRQ Iraq 815.8h 291,123 1.5h 646 1.9h 760
JOR Jordan 25.9h 5,514 1.7h 422 2.0h 721
SAU Saudi Arabia 186.1h 69,350 1.2h 393 2.1h 760
KWT Kuwait 108.2h 32,654 1.2h 450 2.0h 760
LBN Lebanon 116.8h 38,305 1.3h 409 1.9h 760
LBY Libya 127.4h 35,692 2.3h 683 2.0h 760
MRT Mauritania 456.4h 138,706 0.5h 219 1.3h 509
MAR Morocco 57.8h 18,530 1.1h 397 1.9h 760
OMN Oman 58.5h 27,188 1.7h 655 1.8h 760
PSE Palestine, State of 121.4h 39,129 1.4h 456 2.1h 760
QAT Qatar 62.3h 26,650 2.0h 929 1.7h 760
SDN Sudan 47.7h 18,883 0.7h 216 2.0h 760
SYR Syrian Arab Republic 119.5h 47,606 1.3h 470 2.0h 760
ARE United Arab Emirates 108.4h 49,486 22h | 1,144 | 1.8h 760
YEM Yemen 53.4h 21,139 1.3h 540 1.8h 760
Total 3033.4h | 1,043,269 | 24.9h | 8,955 | 33.1h | 12,615

Table 2: ADI17 dataset statistics

20 sec) duration. Also, the test set duration per dialect was balanced,
so each dialect has an average of 2 hours of speech.

2.1. Related datasets

We summarize Arabic speech datasets that have dialect labels in Ta-
ble 1. For the Arabic dialect datasets, most of the large-scale datasets
are not publicly available and their channel condition is relatively
clean such as telephone calls [15] and broadcast news [16]. Publicly
available datasets usually contain less that 15 hours of speech per di-
alect which is relatively small. The ADI17 dataset not only provides
a large-scale dataset but also has 17 dialect labels, an unprecedented
number of dialect classes.

Collect YouTube - —
B Voice activity
from channel —»| Extract audio |— N
detection
by country 1
S — -
Arabic dialects -« MUSI'C
from 17 countries detection

? 1
NQ |
Human <— Speaker
annotator clustering

Fig. 1: Arabic dialect speech collection pipeline

2.2. Collection Pipeline

Step 1. Collect Arabic video channels: We compiled an average
of 30 YouTube channels per country. The list of YouTube channels
was compiled and reviewed by a native speaker from each country.
Initially, we asked native speakers from each country to list channels
that could be of interest. We tried to diversify the channels across
multiple genres per country.

Step 2. Download audio: All the videos related to each channels
were downloaded from YouTube. For each channel, we crawled up
to 100 hours, if available, to avoid the data being biased to a specific
channel or genre. We checked for duplicate videos for each dialect
class to prevent the same video from appearing in multiple dialect
classes. Initially, we downloaded a total of 7,554 hours, which re-
duced to 4,248 hours after removing duplicates.

Step 3. VAD and Music detection: To segment out speech from the
audio channel of each video, we used WebRTC’s Voice Activity De-
tection (VAD)?. We found that there was still much music and other
background sound after VAD. To filter out segments that contained
music or background sounds, we used Ina’s music and speech detec-
tion system [17].

Step 4. Divide into Train and Dev/Test sets: We divided speech
segments into two partitions, i.e. Train and Dev/Test set. For the
Dev/Test set, we randomly picked YouTube IDs to have an aver-
age 15 hours for each dialect (Totaling 280 hours and 99,967 utter-
ances). This set was annotated by human dialect experts. The rest of
the speech segments are used for the Train set. We did not have any
further processing on the Train set, as shown in Table 2.

Step 5. Speaker clustering: Before annotation, we decided to re-
duce the human annotation effort by using speaker clustering. We
assumed that the same person in a video would speak a single dialect.
If we can cluster the speakers in each video under this assumption,
fewer annotations will be needed for each video because the other
segments in same speaker cluster can be regarded as the same di-
alect. For clustering, we followed a similar approach as speaker di-
arization. First, we trained a speaker verification system to extract
speaker embeddings. The system was trained using Voxceleb 1 and
2 which has a total of 7,205 speakers in the training set. We used
the same speaker verification as described in [18] and the system
showed 4% EER on the Voxceleb 1 test set using Cosine distance
between speaker embeddings. We used this system to extract speaker
embeddings from all utterances and used Agglomerate Hierarchical
Clustering (AHC) to cluster speakers for each video.

For reliability, we used a conservative number of clusters be-

cause over-clustering is not an issue on this task. Over-clustering
means that the number of clusters is greater than the expected num-
ber of speakers. We used 10 clusters for each video. Then, we gave
the first and last segment for each cluster to a human annotator. If
the first and last segment in a cluster were spoken in the same di-
alect from same person, we used all the segments in the cluster. If
the dialect was not the same, we discarded all the segments in the
cluster. Through this conservative approach, we could increase the
reliability against erroneous speaker embeddings.
Step 6. Annotation: Using speaker clustering, we reduced the hu-
man annotation effort from 99,967 segments to 11,254 segments, so
we saved 90% of the cost for human annotation. Since annotating
17 dialects is a significantly hard task even for native Arabic people,
we gave 2 binary tasks such as “EGY dialect or not” and “speech or
not” to each annotator. These binary tasks were possible because we
already collected the video using channels per country as described
in step 1.

Zhttps://webrtc.org/
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Step 7. Finalize Dev and Test sets For the final step, we divided
the Dev/Test set into Dev and Test set for validation and evalua-
tion of the identification system. We divided the set into three sub-
categories, under Ssec, between Ssec and 20sec and over 20sec to
represent short, medium, and long utterances. The number of utter-
ances in all three sub-categories in the test set are balanced across
the dialects except Mauritania.

Condition Training Validation Evaluation
. . Test set
Supervised Train set(labeled) Dev set(labeled) (labeled)
. . 99% Train set (unlabeled) } Test set
Semi-supervised 19% Train set (labeled) Dev set (labeled) (labeled)

Table 3: Evaluation conditions for ADI17 dataset.

3. EVALUATION CONDITIONS

To evaluate the effectiveness of the dialect labels and to promote
unsupervised representation learning, we defined two sub-tasks, a
supervised task and a semi-supervised task. For the supervised task,
all the labels in the training set are used to train a system. For the
semi-supervised task, only 1% of the labels in the training data are
available and the rest are regarded as unlabeled data. For the 1%
labeled data, we selected 700 utterances per dialect randomly, a total
of 35 hours for 17 dialects. This semi-supervised task mimics the
real-world challenge of dialect and language recognition in that there
are not enough data to build systems, as we mentioned in section 2.
The validation and evaluation set is the same for the two sub-tasks,
so we can directly compare the performance between the two tasks.

4. EXPERIMENTS

4.1. Baseline systems

Several DID approaches were examined, as described below.
i-vector: We followed the i-vector training approach using Kaldi’s
recipe (sre08/v1l). We used 20 MFCCs and delta and delta-delta as
a feature for the Gaussian Mixture Model-Universal Background
Model (GMM-UBM) with 2048 mixture components. A Total Vari-
ability (TV) matrix was trained to extract 600-dimensional i-vectors.
Logistic Regression (LR) was used to calculate a posterior probabil-
ity for each dialect.

x-vector: We followed the x-vector training approach using Kaldi’s
recipe (srel6/v2). We used 23 MFCCs as input to a time-delayed
Deep Neural Network (DNN). Details of the DNN structure were
described in [19]. An x-vector was extracted from the first fully con-
nected layer in the DNN structure. LR was used to calculate a pos-
terior probability for each dialect.

E2E(x-vector): We also have a variant of the x-vector system which
operated in an end-to-end manner. We used the same system as the
x-vector system and the only difference is how to get the posterior
probability. Rather than extract embedding from one of the fully con-
nected layers, we used the softmax layer output as the posterior prob-
ability for each dialect.

E2E(Softmax): This system was trained using CNNs with a softmax
output. We used 40-dimensional MFCCs as input and used four 1-
dimensional Convolution Neural Network (CNN) layers. The filter
sizes are 40x5 - 1000x7 - 1000x1 - 1000x 1 with 1-2-1-1 strides
and the number of filters is 1000-1000-1000-1500. A global statistic
pooling layer, that calculates mean and standard deviation of the last
CNN layer outputs to produce a fixed output size of 3,000, is used to
connect the CNN and Fully-Connected (FC) layers with 1500-600
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nodes. Then the FC layer output is fed into a Softmax output layer.
Other details are described in [1]. We use the Softmax output as a
posterior probability for each dialect. The baseline system code and
pre-trained model is publicly available.?

E2E(Tuplemax): This system substituted the E2E softmax output
layer with Tuplemax [20]. Other settings are the same, except that
the learning rate is slightly increased.

E2E(AM-Softmax): This system substituted the E2E softmax layer
with Additive Margin Softmax [21]. Other settings are all same ex-
cept that the learning rate is slightly decreased. The optimal hyper-
parameters (margin, scale) we found were (0.02, 5) for the super-
vised task and (0.05, 10) for the semi-supervised task.

4.2. Evaluation result

To evaluate fine-grained DID, we used overall accuracy and cost. We
regard the ADI17 task as a closed-set identification task, so we pick
the maximum score among 17 dialects scores for each test utterance
to calculate the accuracy. We also used average cost performance
Cavg for each target/non-target pair defined in NIST LRE 2017 [22]
with Pigrger as 0.5.

Table 4 shows the performances of the baseline systems on the
ADI17 development and test sets. For supervised conditions, the en-
tire train set is used to estimate the parameters in the systems. For
semi-supervised conditions, the i-vector system used 99% of the un-
labeled part of the train set to train a GMM-UBM and the TV matrix,
then the 1% labeled part was used to estimate the parameters for lo-
gistic regression. For the other systems such as x-vector and E2E
systems only the 1% labeled part of the train set was used to esti-
mate NN parameters. The other 99% unlabeled part was not used at
all. For test set evaluation, we used the parameters that showed the
best EER on the dev set. We did not apply any dataset augmentation.

On both conditions, the E2E approaches that use the output layer
as a posterior probability for each dialect are better than using la-
tent representation such as i-vector or x-vector systems. For the su-
pervised condition, the E2E(Softmax) system showed the best per-
formance on both Accuracy and C,.4. When the labeled data are
limited such as for the semi-supervised condition, the i-vector and
E2E(Tuplemax) systems showed high efficiency. In particular, the
E2E(Tuplemax) system showed significantly low C,,4 compared to
other E2E systems. The i-vector system is still efficient when the ut-
terance is long, which is a common observation for generative mod-
els such as i-vectors.

We also applied AM-Softmax [21] which has shown compet-
itive performance on speaker verification tasks. However, we ob-
served that the margin in the angular softmax could not introduce

3https://github.com/swshon/arabic-dialect-identification
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Fig. 2: (a) Confusion matrix of DID result on E2E(Softmax) system
(b) AHC dendrogram using mean of each dialect embeddings.



Test set Dev set
Conditions System Overall <Ssec Ssec ~ 20sec >20sec Overall
Accuracy | Precision | Recall | Cost | Accuracy | Cost | Accuracy | Cost | Accuracy | Cost | Accuracy | Cost
i-vector 60.3 60.7 60.5 29.1 51.7 36.5 64.5 25.8 75.3 15.0 59.7 28.7
X-vector 72.1 72.1 72.7 20.1 65.7 24.0 754 18.3 81.9 13.9 71.0 20.2
Supervised E2E(x-vector) 77.8 77.8 78.7 16.4 72.7 19.8 80.0 14.9 88.6 9.0 76.6 16.0
task E2E(Softmax) 82.0 82.1 83.3 13.7 76.2 18.8 85.1 10.9 90.4 6.7 83.0 11.7
E2E(Tuplemax) 78.6 78.7 80.9 142 71.9 18.8 82.1 11.9 88.7 8.2 78.6 13.9
E2E(AM-Softmax) 63.7 63.8 62.9 36.1 57.5 40.1 66.5 34.0 75.0 30.5 62.5 36.5
i-vector 47.4 474 47.3 40.7 39.3 49.2 50.4 37.0 67.2 239 46.8 394
X-vector 39.3 39.2 387 | 493 323 56.4 42.5 459 524 36.8 41.2 48.0
Semi-supervised E2E(x-vector) 40.5 40.3 40.0 | 49.7 33.1 58.3 43.6 45.8 56.2 335 42.1 48.0
task E2E(Softmax) 48.8 48.6 48.8 48.2 40.5 57.1 52.7 443 63.6 30.7 47.5 46.7
E2E(Tuplemax) 50.4 50.2 499 | 38.6 4.3 46.2 54.2 352 64.7 23.8 48.7 37.3
E2E(AM-Softmax) 49.8 49.6 48.7 51.0 41.3 55.8 53.5 49.0 66.2 41.1 48.1 50.0
Table 4: Performance evaluation using ADI17 test set. Note that Cost is equal to Cqyg * 100.
Confusion matrix
Confusion matrix
msal 65 5 8 31 49 2 13 32 2 7 9 2 0 1 7 2 7
% NOR 47 34 45 75 44 7 13 32 15 6 7 3 4 4 1 3 4 S
e =
§ EGY 8 2 1 29 196 5 9 19 7 5 4 3 4 2 6 1 1 E‘;
z 8
- H
8 Lev] 20 3 10 32 45 4 67 48 32 18 12 9 4 4 7 7 12 3
] s
GLF 20 1 2 23 9 7 14 9 a4 9 60 40 4 13 4 10 21
MRT MAR DzA LBY EGY SDN [PSE LN SYR JJORMl IRQ KWT ARE QAT OMN SAU YEM
NoR EGY LEV GLF NOR EGY LEV GLF
Predicted label Predicted label (Merged by region)
(@) (b)

Fig. 3: (a) Confusion matrix of MGB-3 test set on adil7 system. (x-axis reflects the maps

of the Arabic region from west-to-east to group

similar countries together) (b) Confusion matrix of MGB-3 test set on regional class.

an improvement on the DID system. The margin between the classes
seems not to be an important factor since the task is closed-set iden-
tification and there would be no new class as input.

For the semi-supervised condition, we applied Factorized Hier-
archical Variational Autoencoder (FHVAE) for representation learn-
ing from the unlabeled part (99%) of the train set. This approach was
based on previous work [5]. However, we did not observe that the
unsupervised representation learning showed a benefit on the DID
task. We suspect that the FHVAE model is too small and only local
information is being encoded.

4.3. Discussion

The confusion matrix and the AHC dendrogram as shown in Fig-
ure 2. Jordanian (JOR) shows poor performance compared to other
dialects, and this can be due to limited training data. The dendro-
gram shows the closeness of dialects of countries close to each other
and with the same geographic region. These indicate that the data
collection for the ADI17 is reasonable.

However, the ADI17 dataset has a strong limitation. All speech
were collected from the same video sharing platform, so that the
channel domain of the training and evaluation set is matched. More-
over, we only considered YouTube ID to partition the train, dev and
test sets and eliminate overlap across the sets. For this reason, there
might be the same speakers (such as popular actors or broadcast-
ers) appearing in different sets. These issues hinder objective system
evaluation and we speculate this is the reason that the 17 DID accu-
racy is higher than the previous 5 regional DID result [1, 4].

Consequently, we need a more objective dataset to evaluate the
performance of a system trained using the ADI17 dataset. Since the
country-labeled dialect speech collection from another domain is
very difficult, one of the remedies is to use available datasets. For
example, the MGB-3 [11] test set* was collected from high-quality

broadcasting system servers by down-sampling to 16kHz, and can be
leveraged for evaluation. As shown in Figure 3(a), we fed the MGB-
3 test set in E2E(Softmax) system and generated the confusion ma-
trix. Since the MGB-3 data has only 5 regional classes, we cannot
calculate the performance directly. Thus, we merged the 17 Arabic
dialect classes into 4 regional classes (excluding Modern Standard
Arabic (MSA), which we do not have in the ADI17 system). The re-
sult is shown in Figure 3(b). They show 58% accuracy on the MGB-3
test set. When compared to other domain mismatched DID systems
which showed 48.79% and 51.27% as reported in [4], the system
trained using ADI17 is significantly better even if they do not have
same label. In this way, we could have a more objective benchmark
to prevent over-fitted performance on the same channel domain.

5. CONCLUSION

LID and DID typically do not receive much attention because they
are regarded as a variant of speaker recognition, and subsequently
lack publicly available datasets. However, the state-of-the-art ap-
proach in speaker recognition such as AM-Softmax turns out not to
be suited for LID and DID as we showed in our experiments, and we
need another approach for closed-set identification. To promote DID
research, we presented a large-scale fine-grained labeled dataset col-
lection pipeline. The metadata of the dataset is publicly available, so
we expect follow-up studies on this dataset for both supervised and
semi-supervised tasks.

In the future, we plan to provide another benchmark protocol
to evaluate the system using the speech data which was collected
through a different channel domain e.g. MGB-3 test set. We will
also consider additional annotation works for the MGB-3 dataset
to obtain country-level dialect labels. Additionally, we plan to add
other dialect classes to cover all the Arabic speaking countries in the
world.

4 Available: https://github.com/qcri/dialectID/blob/master/data/test. MGB3/wav.lst
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