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General model based on CNN
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Advances in speaker recognition

• Recent studies

SLT2018 

Speaker Recognition from Raw 
Waveform with SincNet

Ravanelli and Bengio

Feature Extractor

ICASSP 2019

Utterance-level aggregation for 
speaker recognition in the wild

Xie, Nagrani, Chung and Zisserman

Aggregator Mapper

SP Letter 2018

Additive Margin Softmax for Face 
Verification

Wang, Cheng, Liu and Liu
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Lack of study under noisy condition

• Most of studies tested on clean or mild noise condition
• However, still vulnerable on distant, noise and reverberation
• Very few studies of speech enhancement on speaker recognition 

– Sadjadi and Hansen, Interspeech 2010
– Plchot et al, ICASSP 2016

• Why so few?
– Artifacts and distortion make speaker recognition worse
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Lack of study under noisy condition

Interspeech 2010

Assessment of single-channel
speech enhancement techniques 
for speaker identification under

mismatched conditions

Sadjadi and Hansen

ICASSP 2016

Audio enhancing with DNN 
autoencoder for speaker 

recognition

Plchot, Burget, Aronowitz and Matejka

unprocessed
enhanced
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Lack of study under noisy condition

• Most of studies tested on clean or mild noise condition
• However, still vulnerable on distant, noise and reverberation
• Very few studies of speech enhancement on speaker recognition 

– Sadjadi and Hansen, Interspeech 2010
– Plchot et al, ICASSP 2016

• Why so few?
– Artifacts and distortion make speaker recognition worse

Let’s expose the downstream task on speech enhancement!
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Speech enhancement

• Objective : reconstructing original signal from noisy input
• Denoising Autoencoder (DAE) structure with L2 loss

Speech 
Enhancement

Enhanced 
spectrogram

L2 loss

Noisy
spectrogram

Reference
spectrogram
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Speech enhancement on for speaker recognition

• Objective : Reconstructing original signal from noisy input• Objective : Reconstructing original signal from noisy input
Improving verification performance

Speech 
Enhancement

Speaker
Verification

Cross entropy 
loss

Noisy
spectrogram

Speaker
label

[0, 1, 0, 0]

Softmax
output

[0.01, 0.95, 0.025, 0.015]

Identity enhanced
spectrogram

Speech 
Enhancement

Enhanced 
spectrogram

L2 loss

Noisy
spectrogram

Reference
spectrogram

Reference
spectrogram
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Proposed structure

Speaker verification networkMask generating network

Speech

Speaker ID Cross entropy
loss

Trained using 
clean speech

Trained using 
Noisy speech

Freeze
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Proposed structure (detail)
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Experiments

• Implementation
– Voxceleb1 dataset : Dev set for training, Test set for evaluation
– MUSAN for noise augmentation and noisy test set
– Conducted on two speaker verification model 

* Voxceleb1 dev
* Voxceleb1 dev + noise augmented Voxceleb1 dev

– Masking network was trained using noise augmented Voxceleb1
– Test set was augmented with noise (SNR 0~20)
– Use magnitude of spectrogram as input, linear scale, power-law compressed with 0.3
– Using 3sec input for training (298frames)
– (noisy phase was used only to reconstruct waveform for demo)
– DAE used for comparison (8-layer TDNN,1000 hidden units per layer )
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Tested on Voxceleb1-test
(a) Original test set (b) Music (SNR=0dB)

(c) Babble (SNR=0dB) (d) Reverb (small room)

8-layer time-delay neural network (TDNN) 
1000 hidden units per layer 
Context size is 25 frames

*

*

Proposed
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Experiments

• Spectrogram samples (degrading)

Music
Noise

<Original Spectrogram> <Degraded Spectrogram (SNR=0)>
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Experiments

• Spectrogram samples (enhancement)

●

Speech
Enhancement

Network
(generate 
ratio mask)

<Degraded Spectrogram (SNR=0)> <Ratio Mask> <Masked Spectrogram>
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Experiments
• Wav samples

<Proposed (Masked)>

<DAE result>

<Degraded Spectrogram (SNR=0)>

<Residue (Degraded-masked)><Original>
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Experiments
• Spectrogram samples from TIMIT

s v b p f t ch z t k

s v b p f t ch z t k

We’ll serve rhubarb pie after rachel’s talk

Original

Enhanced
(masked)
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Conclusion

• First speech enhancement attempt only for text-independent speaker verification
• Only use speaker label for speech enhancement 
• Speech enhancement for multi-condition scenario

General speaker recognition 
system w. large amount speech

Device-specific
mask

Device-specific
mask



Thank you
Check more samples ->

people.csail.mit.edu/swshon/supplement/voiceid-loss

https://people.csail.mit.edu/swshon/supplement/voiceid-loss


Appendix
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Experiments
Verification model trained 

with only clean set
Verification model trained 
with clean and noisy set


